国产精品加勒比_一区二区三区欧美成人_在线欧美一区_欧美自拍资源在线_欧美一区二区综合_相泽南亚洲一区二区在线播放_亚洲韩国在线_一区二区三区国产盗摄_一区二区在线观看网站_99re资源

email info@szyujiaxin.com
御嘉鑫LOGOSHENZHEN YUJIAXIN TECH CO.,LTD.
Технологии
Продукция
Связаться с нами
  • Email: info@szyujiaxin.com
  • Whatsapp: +8615986816992
  • Wechat: yujiaxin-666
  • QQ: 2269845694
Ваше текущее положение:Главная страница > Технологии > Подробное описание

MIM F75 (Co-Cr-Mo) для крупносерийного производства влияние условий спекания на микроструктуру и свойства


 

Дата выпуска:[2024/3/19]
 

Индустрия электронных приборов возникла в 20 годуЙ и является одной из крупнейших отраслей промышленности в мире на сегодняшний день. Общество использует огромное количество электронных устройств, построенных на автоматизированных или полуавтоматических заводах. В настоящее время эти устройства распространены повсеместно, и миллиарды людей используют их в своей повседневной жизни.

Коммуникационные и вычислительные устройства, такие как смартфоны, умные часы, планшеты и портативные компьютеры, состоят из сложных комбинаций компонентов, многие из которых используют материалы, оптимизированные для производства электроники. Эти материалы стали основой для современной эпохи электронных, информационных и коммуникационных технологий и внесли большой вклад в мировой экономический рост.

Компоненты, изготовленные из этих материалов, интегрированы в бесчисленное количество устройств и широко используются практически во всех отраслях. К ним относятся информационно-коммуникационные технологии, здравоохранение, производство, автоматизация и управление, робототехника, перерабатывающая промышленность, приборостроение, энергетика и энергосистемы, оборона и безопасность.

Электромагнитные компоненты на основе современных металлических материалов являются одной из наиболее значимых разработок в современной индустрии 3С (компьютеры, связь и бытовая электроника). Эти материалы сочетают в себе превосходную механическую прочность с достаточно высокой коррозионной стойкостью, износостойкостью и специфическими магнитными свойствами (ферромагнетизм или парамагнетизм, в зависимости от конструкции и функции изделия). К ним относятся нержавеющие стали, кобальтовые сплавы и другие передовые сплавы.

Некоторые хорошо известные примеры применения электроники 3C для этих передовых сплавов включают компоненты камер (переключатели и кнопки), носимые устройства (корпуса часов), устройства с мягкими магнитными полями, электронные корпуса, радиаторы / теплоотводы для электронного охлаждения, петли ноутбуков и USB-разъемы и т. д.

Для создания компонентов устройств, упомянутых выше, требуются значительные навыки и точность, и существует множество препятствий, которые необходимо преодолеть. Важно, чтобы дизайнеры могли быстро и эффективно находить и выбирать подходящие материалы, чтобы идти в ногу с быстро развивающимися разработками.

Рис.2 Примеры компонентов MIM, производимых компанией Chenming Electronic Technology Corp. (предоставлено ЕЭК ООН)

Притяжение кобальтовых сплавов

Сплавы на основе кобальта уже давно разрабатываются для имплантируемых медицинских устройств, а в последнее время применяются в электронной промышленности 3C. Они проявляют износостойкие, коррозионностойкие и жаропрочные свойства. Наиболее эффективно сплавы на основе кобальта используются в износостойких компонентах.

Кобальт более широко используется в качестве легирующего элемента для жаропрочных применений в жаропрочных сплавах на основе никеля, при этом тоннаж кобальта выше, чем в жаропрочных сплавах на основе кобальта. Кроме того, сплавы на основе кобальта демонстрируют превосходную стойкость к различным формам высокотемпературного коррозионного воздействия, включая реакции окисления, сульфидирования и науглероживания.

Многие коммерческие сплавы на основе кобальта, полученные из тройных сплавов Co-Cr-W и Co-Cr-Mo, были впервые исследованы Элвудом Хейнсом, который в 1907 году обнаружил упрочняющий эффект и коррозионную стойкость, придаваемую кобальту хромом. Позже он идентифицировал вольфрам и молибден как мощные упрочняющие агенты в системе кобальт-хром. Сплавы Co-Cr-Mo, один из передовых сплавов на основе кобальта, широко применяются для авиационных двигателей, медицинских тотальных эндопротезов тазобедренного сустава, стоматологических устройств, опорных конструкций для сердечных клапанов и т. д. Сплавы Co-Cr-Mo хорошо известны своим сочетанием высоких механических характеристик, износостойкости, коррозионной стойкости и приемлемой биосовместимости. Однако главным их свойством является коррозионная стойкость в хлоридных средах.

Помимо ранее упомянутых применений сплавов Co-Cr-Mo, в последнее время большое внимание уделяется их использованию в телекоммуникационной отрасли 3С. Например, компоненты кронштейна камеры смартфона являются перспективным применением этих сплавов благодаря сочетанию прочности, коррозионной стойкости, износостойкости и немагнитных свойств.

Обзор кобальтовых сплавов

Сплавы на основе кобальта были введены в то, что сейчас называется областью жаропрочных сплавов, главным образом из-за пригодности сплава Co-Cr-Mo, названного ?Vitallium?, для воспроизведения сложных форм методом прецизионного литья по выплавляемым моделям [1]. Многие свойства сплавов на основе кобальта обусловлены кристаллографической природой кобальтового элемента. К таким свойствам относятся: упрочняющие свойства кобальта и твердых растворов хрома, вольфрама и молибдена; образование карбидов металлов; и коррозионная стойкость, придаваемая хромом. Сплавы на основе кобальта упрочняются твердым раствором и карбидным дисперсионным упрочнением с добавлением углерода, хрома и молибдена.

Хром и молибден повышают коррозионную стойкость сплавов и улучшают их механические свойства за счет уменьшения абразивного износа и снижения энергии ошибки при штабелировании. Сплав Co-Cr-Mo, усовершенствованный сплав на основе кобальта, широко используется в атомных электростанциях, лопатках аэрокосмических двигателей и биомедицинских хирургических имплантатах. В последнем случае их используют для изготовления искусственных тазобедренных и коленных суставов ?металл-металл?. Эти сплавы Co-Cr-Mo известны своим сочетанием высоких механических характеристик, усталостной прочности, низкой ползучести, высокой стойкости к износу/коррозии и биосовместимости, но их основным свойством является коррозионная стойкость в хлоридных средах. Это свойство связано с их объемным составом (главным образом, высоким содержанием хрома) и образованием защитного поверхностного оксидного слоя (номинально Cr2O3).

Сплавы Co-Cr-Mo уже давно широко применяются в хирургических имплантатах, таких как протезы для замены суставов (бедренный компонент при полном эндопротезировании коленного сустава и головка бедренной кости при полной замене тазобедренного сустава), локти, пальцы, костные пластины, винты, стержни и зубные имплантаты. Однако из-за того, что кобальт во многих регионах классифицируется как стратегический минерал/металл, глобальный дефицит предложения и колебания цен на металл могут стать решающими факторами для долгосрочного производства.

Имплантаты из сплава кобальта могут быть изготовлены традиционным способом с использованием деформируемых или литых технологий. Деформируемые кобальтовые сплавы изготавливаются путем ковки материала при повышенных температурах под высоким давлением. Кроме того, в настоящее время исследуются новые методы формирования деталей из металлических порошков с помощью литья металлов под давлением (MIM). Новые области применения компонентов MIM имеют тенденцию к более компактным и сложным устройствам для минимально инвазивной хирургии, особенно к лапароскопическим инструментам для захвата тканей, разрезания и наложения швов. Такие устройства проектируются для большей свободы передвижения, что позволило увеличить количество металлических компонентов, используемых в сборке.

Компания MIM предоставила свободу проектирования для экономичного производства таких компонентов. Новой областью исследований этого процесса является производство микроразмерных компонентов, которые должны помочь соответствовать будущим медицинским критериям, поскольку детали продолжают уменьшаться в размерах для минимально инвазивной хирургии.

Несколько спецификаций ASTM охватывают свойства материалов для различных составов Co-Cr-Mo и маршрутов обработки. Литые сплавы Co-Cr-Mo, соответствующие стандартам ASTM F75, широко использовались в течение многих лет для производства хирургических имплантатов и до сих пор широко используются во многих областях, таких как бедренный компонент протезов коленного сустава и плечевой компонент протезов плечевого сустава. Близкий аналог этого сплава, стеллит 21, изначально применялся в лопатках турбокомпрессоров самолетов и до сих пор используется для износостойкости.

Впоследствии сплав ASTM F75 Co-Cr-Mo был модифицирован, чтобы сделать его кузнечным, и это достижение привело к разработке спецификации ASTM для поковок из сплава Co-28Cr-6Mo для хирургических имплантатов (F799). Сплав доступен в таких прокатных изделиях, как прутковая заготовка, которая используется либо для непосредственной обработки устройства (например, головка бедренной кости протезов тазобедренного сустава), либо для его ковки (например, цементированные стержни тазобедренного сустава). До 1994 года как прутковая заготовка, так и поковки подпадали под действие стандарта ASTM F799. Спецификация была разделена в 1994-95 годах на F799 для поковок и F1537 для прутков.

Много усилий было предпринято для улучшения механических и трибологических свойств литейных сплавов Co-Cr-Mo. Существуют сплавы Co-Cr-Mo в нескольких различных условиях, определяемых, прежде всего, их исходным составом (например, низкое или высокое содержание углерода) [2], условиями производства (например, литье или ковка) [3], последующей термической обработкой (термообработка раствором, горячее изостатное прессование или спекание) [4,5] и инженерными поверхностями путем физического и химического осаждения из газовой фазы [6].

The MIM of F75

В случае F75, производимого MIM, спекание этого сплава имеет решающее значение для получения продукта с высокими эксплуатационными характеристиками. Высокая температура спекания в процессе MIM необходима для получения высокой плотности спекания (более 95% от теоретической) и однородной микроструктуры. Некоторые из переменных, влияющих на характеристики спекания этого сплава, - это исходный размер частиц, химический состав, пористость и атмосфера спекания. [7-13].

В относительно широкой химической спецификации ASTM F75 важно отметить, что незначительные изменения в уровнях углерода могут привести к существенно отличающимся реакциям спекания и сопутствующему влиянию на плотность и механические свойства. Карбиды придают прочность и износостойкость, поглощая хром и молибден из окружающей среды в процессе затвердевания. Сплавы Co-Cr-Mo F75 для компонентов кронштейнов камер мобильных телефонов являются одним из успешных коммерческих применений MIM в электронике 3C. Появляются новые возможности для применения этого сплава в других электронных устройствах MIM.

Процессы порошковой металлургии все чаще используются для производства механических компонентов для многочисленных промышленных и потребительских применений [14-18]. При надлежащем соединении с полимерными связующими материалами эти неорганические порошки можно формовать так же, как и термопласты. Продукты, получаемые с помощью этого процесса, позволяют избежать градиента плотности, характерного для традиционного процесса прессования/агломерата. MIM чаще всего используется для изготовления деталей с небольшими размерами, сложной формой и жесткими допусками в больших объемах. Экструзия или простое прессование могут быть использованы для деталей простой формы. Производство MIM дает преимущество формовки пластмасс под давлением, но расширяет область применения многочисленных высокоэффективных металлов, сплавов и технической керамики.

Эта передовая технология приобрела популярность за последние три десятилетия как эффективный подход к производству геометрически сложных деталей почти чистой формы с точными размерами и превосходным качеством поверхности. Он может изготавливать тонкостенные детали с жесткими допусками в различных отраслях промышленности с экономичными процессами для крупномасштабного производства, таких как медицинские, автомобильные, аэрокосмические и электронные компоненты 3C [19-37].

Строгие критерии свободы геометрического дизайна, изысканность, высокая прочность, возможность крупносерийного производства, тонкая обработка поверхности, точные допуски и гибкий выбор материалов позволили MIM процветать в области электроники 3C. Электронная промышленность является основным потребителем металлических деталей, изготовленных методом литья под давлением, на долю которых приходится устойчивые и растущие мировые продажи, особенно в Азии. Соединители со сложной геометрией в настоящее время являются основными продуктами MIM. Миниатюризация электронных устройств требует меньших размеров компонентов для достижения лучшей производительности при меньших затратах. MIM имеет конкурентное преимущество для таких приложений.

Методика проведения эксперимента

Сплавы MIM Co-Cr-Mo были получены из сырья UNEEC на основе POM и с использованием серийных серийных печей непрерывного производства UNEEC в различных атмосферных сочетаниях. Вариации в атмосферных сочетаниях приводили к различиям в механических свойствах и микроструктурах. Ни горячее изостатное прессование (HIP), ни термическая обработка после спекания не применялись.

Рис.3 Порошки Mitsubishi Steel MFG AKT F-75: (а) изображение морфологии СЭМ; (b) Элементное картирование ЭЦП

Предварительно легированные порошки Co-Cr-Mo, использованные в этом исследовании, были изготовлены компанией Mitsubishi Steel MFG с использованием запатентованной технологии распыления воды. СЭМ морфологии порошка и анализ основных элементных карт представлены на рис.3. Химический состав и гранулометрический состав порошка сведены в таблицу 1.

Table 1 Mitsubishi Steel MFG AKT F-75 powders chemical composition (wt.%), particle size distribution and densityТаблица 1 Химический состав порошков Mitsubishi Steel MFG AKT F-75 (мас.%), гранулометрический состав и плотность

Сырье смешивалось с использованием запатентованной UNEEC многокомпонентной системы связующего на основе полиоксиметилена (POM) с помощью смесителя Z-Blade.

Образцы растяжимых прутков были подготовлены методом литья под давлением на машине Nissei NEX 50T, а параметры впрыска сведены в таблицу 2. Отформованные сырые детали затем подвергались процессу выжигания в печи Winteam HT-220LTZL в дымящейся азотной кислоте. В печах непрерывного действия с шагающей балкой Cremer Thermoprozessanlagen GmbH были проведены различные испытания параметров спекания.

Table 2 Injection parameters of POM-based F75 feedstocks for tensile bar green compactТаблица 2 Параметры впрыска сырья F75 на основе ПОМ для растяжимого прутка зеленого компакта

Для морфологического исследования использовали оптический микроскоп (HM-3006, Jia Yu Apparatus Co., Ltd., Тайвань). Для идентификации кристаллической структуры использовали рентгеноструктурный метод (XRD) (D2, Bruker, Карлсруэ, Германия). Распределение элементов оценивали с помощью EPMA (JXA-8200SX, JEOL, Япония) с помощью EDS (X-MAX 50, Oxford Instruments, Великобритания). Кроме того, микроскопические изображения и фазовые исследования с более высоким разрешением были проведены с помощью Fesem (JSM-7800F Prime, JEOL, Япония) с детектором дифракции обратного рассеяния электронов (EBSD) (NordlysNano, Oxford Instruments, Великобритания).

Результаты и обсуждения

Fig. 4 Mechanical properties of sintered Co-Cr-Mo alloys based on hydrogen to argon ratio at 22:6 m3/h flow rate at 1315°C. ASTM F75 standard (UTS ≥ 655 MPa; YS ≥ 455 MPa; Elongation ≥ 8%)Рис.4 Механические свойства спеченных сплавов Co-Cr-Mo на основе соотношения водород/аргон при 22:6 м3/ч расхода при 1315°C. Стандарт ASTM F75 (UTS ≥ 655 МПа; YS ≥ 455 МПа; Относительное удлинение ≥ 8%)





国产精品加勒比_一区二区三区欧美成人_在线欧美一区_欧美自拍资源在线_欧美一区二区综合_相泽南亚洲一区二区在线播放_亚洲韩国在线_一区二区三区国产盗摄_一区二区在线观看网站_99re资源
日本在线播放一区| 亚洲资源av| 成人一区二区三区四区| 欧美日韩亚洲一区二区三区在线| 欧美系列一区| 午夜一级在线看亚洲| 欧美特黄视频| 亚洲欧美电影在线观看| 亚洲区第一页| 国产乱子伦精品| 美女网站久久| 日韩视频一区二区三区在线播放免费观看| 三级三级久久三级久久18| 国产精品国产三级国产专区53| 国产亚洲网站| 99国产精品久久久久久久| 欧美日韩国产精品一卡| 国产精品美女黄网| 7777精品久久久大香线蕉小说| 日韩经典在线视频| 欧美日韩一区在线观看视频| 精品成人国产| 亚洲国产精品第一区二区| 欧美日韩视频一区二区三区| 欧美在线影院| 欧美精品三级| 激情成人综合| 国产免费成人| 欧美成人日本| 久久国产精品免费一区| 伊人色综合久久天天五月婷| 欧美成人一品| 国模一区二区三区私拍视频| 国产精品免费在线播放| 狠狠色噜噜狠狠狠狠色吗综合| 在线成人国产| 国产一区二区三区的电影 | 成人黄色片视频网站| 老妇喷水一区二区三区| 国产综合欧美| 中国成人亚色综合网站| 一本一道久久久a久久久精品91| 狂野欧美一区| 久久久久资源| 伊人久久青草| 欧美激情论坛| dy888夜精品国产专区| 好吊色欧美一区二区三区 | 亚洲少妇一区| 99精品99久久久久久宅男| av成人免费观看| 久久久久成人精品免费播放动漫| 精品动漫一区| 午夜精品视频在线观看一区二区| 日本在线免费观看一区| 欧美1级日本1级| 国产精品永久| 国产视频一区三区| 亚洲经典自拍| 亚洲高清电影| 亚洲夜间福利| av在线亚洲男人的天堂| 91成人伦理在线电影| 国产精品有限公司| 久久天堂国产精品| 黄色成人av网站| 国产精品区一区二区三含羞草| 欧美精品aa| 欧美午夜一区| 国产精品久久九九| 精品中文字幕人| 国产乱码精品一区二区三区中文 | 粉嫩精品一区二区三区在线观看| 午夜亚洲性色福利视频| 亚洲资源av| 亚洲成人a**址| 中文字幕久久一区| 欧美日韩一区在线观看视频| 51精品国产人成在线观看| 91丝袜脚交足在线播放| 影音先锋亚洲视频| 亚洲网站啪啪| 亚洲免费在线| 成人一区二区在线| 欧美精品免费观看二区| 久久综合色一本| 一区二区三区福利| 影音先锋亚洲视频| aa日韩免费精品视频一| 欧美日韩最好看的视频| 亚洲国产午夜伦理片大全在线观看网站 | 日韩影片在线播放| 国产女优一区| 精品欧美一区二区三区久久久| 欧美激情一区二区三区在线视频| 亚洲mv在线看| 亚洲精品乱码| 国产精品一区而去| 一本一本久久| 国产精品vip| av资源站久久亚洲| 亚洲永久网站| 日本免费高清一区二区| 98国产高清一区| 色播五月综合| 中文有码久久| 亚洲黄色免费| 粉嫩av一区二区三区免费观看 | 99国产精品| 欧美一区二区三区在线播放| 国产一区二区三区久久| 国产精品mm| 欧美欧美全黄| 欧美成人一区二区在线| 久久亚洲影院| 久久精品国产第一区二区三区最新章节 | 一区二区亚洲精品| 一区二区三区视频在线播放| 免费在线观看成人av| 免费久久99精品国产自| 久久av二区| 国偷自产av一区二区三区小尤奈| aa成人免费视频| 欧美日韩一区在线观看视频| 欧美福利一区| 韩国成人动漫在线观看| 亚洲日本欧美| 日韩激情视频| 在线观看日韩片| 欧美粗暴jizz性欧美20| 国产精品草草| 日韩wuma| 在线视频精品一区| 黄色国产精品| 国产精品一区二区三区四区五区 | 亚洲理伦在线| 亚洲一卡久久| 国产在线视频欧美一区二区三区| 欧美在线激情| 在线观看欧美一区| 欧美日韩国产一二| 久久久www| 久久精品日产第一区二区三区精品版 | 玖玖玖精品中文字幕| 欧美人与性禽动交精品| 午夜精品一区二区三区在线观看 | 黄色成人在线网站| 亚洲高清123| 好看的日韩精品视频在线| 国产视频不卡| 91在线免费看片| 亚欧美中日韩视频| 国内一区二区在线视频观看 | 久久看片网站| 欧美婷婷久久| 在线观看成人一级片| 久久久久天天天天| 久久综合九九| 欧美激情www| 精品在线一区| 韩日精品视频| 激情久久中文字幕| www国产亚洲精品| 亚洲欧洲一二三| 美日韩免费视频| 久久人人97超碰国产公开结果| 99热免费精品在线观看| 国产美女精品在线观看| 动漫3d精品一区二区三区| 一区二区三区av| 久久精品中文| 91文字幕巨乱亚洲香蕉| 风间由美久久久| 国产在线精品一区| 韩国av一区| 国产一区二区三区黄| 久久婷婷开心| 日韩精彩视频| 欧美国产三区| 国内一区二区三区在线视频| 国产精品免费看一区二区三区 | 99精品视频免费观看| 国产亚洲精品v| 日韩一区二区电影在线观看| 影音欧美亚洲| 国产精品一区二| 日韩欧美亚洲v片| 欧美高清不卡| 久久久久久国产精品mv| 亚洲欧美在线网| 99久久精品无码一区二区毛片 | 欧美人成网站| 欧美日韩电影一区二区三区| 亚洲三区在线| 国产高清在线精品一区二区三区| 国新精品乱码一区二区三区18| 久久蜜桃资源一区二区老牛| 欧美日韩亚洲国产精品| 欧美一区1区三区3区公司 | 欧美主播一区二区三区美女 久久精品人|